
Public

SMART CONTRACT AUDIT REPORT

for

Apollox

Prepared By: Xiaomi Huang

PeckShield
May 10, 2023

1/21 PeckShield Audit Report #: 2023-101

contact@peckshield.com

Public

Document Properties

Client Apollox
Title Smart Contract Audit Report
Target Apollox
Version 1.0
Author Xuxian Jiang
Auditors Stephen Bie, Patrick Lou, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 10, 2023 Xuxian Jiang Final Release
1.0-rc1 May 2, 2023 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2023-101

Public

Contents

1 Introduction 4
1.1 About Apollox . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Settlement Logic in TradingCloseFacet . 11
3.2 Incorrect Pair Slippage Update Logic in LibPairsManager 12
3.3 Suggested Adherence of Checks-Effects-Interactions 13
3.4 Improved Role Member Management in LibAccessControlEnumerable 15
3.5 Incorrect Fee Total Accounting in LibFeeManager 16
3.6 Trust Issue of Admin Keys . 17

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2023-101

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Apollox protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Apollox

Apollox is a decentralized derivatives trading platform. The main architecture of Apollox V2 is the
fully on-chain liquidity model for more transparent, low slippage trades. Users do not need to register,
deposit or withdraw funds. All V2 trades are executed against the ALP pool on BNB Smart Chain and
liquidity for all V2 trading pairs is shared via the ALP pool to maximize capital efficiency. Real time
price feeds will be taken from both Binance Oracle and Chainlink to ensure the most accurate pricing.
The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of Apollox

Item Description
Target Apollox

Website https://www.apollox.finance
Type Solidity Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 10, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit. Note this protocol assumes a trusted external oracle, which is not part of the audit.

4/21 PeckShield Audit Report #: 2023-101

Public

• https://github.com/apollox-finance/apollox-perp-contracts.git (a38e3b5)

And this is the Git repository and commit ID after all fixes for the issues found in the audit have
been checked in:

• https://github.com/apollox-finance/apollox-perp-contracts.git (e56cc7a)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/21 PeckShield Audit Report #: 2023-101

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2023-101

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/21 PeckShield Audit Report #: 2023-101

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2023-101

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Apollox implementation. During the first phase
of our audit, we study the smart contract source code and run our in-house static code analyzer
through the codebase. The purpose here is to statically identify known coding bugs, and then
manually verify (reject or confirm) issues reported by our tool. We further manually review business
logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible
pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 2

Low 3

Informational 0

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/21 PeckShield Audit Report #: 2023-101

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerability, and 3 low-severity vulnerabilities.

Table 2.1: Key Apollox Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Settlement Logic in Trading-

CloseFacet
Business Logic Resolved

PVE-002 High Incorrect Pair Slippage Update Logic in
LibPairsManager

Business Logic Resolved

PVE-003 Low Suggested Adherence Of Checks-
Effects-Interactions Pattern

Time and State Resolved

PVE-004 Low Improved Role Member Management in
LibAccessControlEnumerable

Security Features Resolved

PVE-005 Low Incorrect Fee Total Accounting in
LibFeeManager

Coding Practices Resolved

PVE-006 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/21 PeckShield Audit Report #: 2023-101

Public

3 | Detailed Results

3.1 Improved Settlement Logic in TradingCloseFacet

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: High

• Target: TradingCloseFacet

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned earlier, Apollox is a decentralized derivatives trading platform that enables users to
open/close trade spot and futures with low fees, deep liquidity and get rewards. While examining
the trade-closing logic, we notice the current settlement is not as accurate as expected.

In the following, we show the code snippet from the related TradingCloseFacet::_settleForCloseTrade

() helper routine. As the name indicates, this routine is designed to settle the trade when it is
requested to close. The settlement has an invariant to maintain, i.e., openTradeReceive + closeFee

+ userReceive + lpReceive (line 65). It comes to our attention that in the last else-branch (line
77), the current lpReceive is assigned as lpReceive = - openTradeReceive. However, it forgot to reset
closeFee = 0. As a result, the current invariant might not hold further.

61 function _settleForCloseTrade(
62 LibTrading.TradingStorage storage ts , ITrading.OpenTrade memory ot,
63 bytes32 tradeHash , int256 pnl , int256 fundingFee , uint256 closeFee
64) internal {
65 // openTradeReceive + closeFee + userReceive + lpReceive == 0
66 // closeFee >= 0 && userReceive >= 0
67 int256 openTradeReceive = - int256(uint256(ot.margin)) - fundingFee;
68 uint256 userReceive;
69 int256 lpReceive;
70 if (- openTradeReceive + pnl >= int256(closeFee)) {
71 userReceive = uint256(- openTradeReceive + pnl) - closeFee;
72 lpReceive = - pnl;
73 } else if (- openTradeReceive + pnl > 0 && - openTradeReceive + pnl < int256(

closeFee)) {

11/21 PeckShield Audit Report #: 2023-101

Public

74 closeFee = uint256(- openTradeReceive + pnl);
75 lpReceive = - pnl;
76 } else {
77 lpReceive = - openTradeReceive;
78 }
79
80 _settleAsset(ts , SettleAssetTuple(ot, tradeHash , openTradeReceive , closeFee ,

userReceive , lpReceive));
81 }

Listing 3.1: TradingCloseFacet::_settleForCloseTrade()

In addition, since the closeFee state may be changed within this helper routine, there is a need
to propagate the resulting closeFee back to its caller _closeTrade(), which will include the closeFee

as part of the CloseInfo in OrderAndTradeHistory.

Recommendation Revise the above routine to properly adjust closeFee in all possible execution
paths and accordingly record the resulting closeFee. Note another routine _settleForLiqTrade() shares
the same issue.

Status The issue has been fixed by this commit: 0e0fffb7.

3.2 Incorrect Pair Slippage Update Logic in LibPairsManager

• ID: PVE-002

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: LibPairsManager

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Apollox protocol has a library contract LibPairsManager to manage the set of pairs supported for
spot and future trading. For each pair, the contract allows for the adjustment of associated openFee

and closeFee. While reviewing the fee-adjusting logic, we notice the current implementation needs
to be revised.

To elaborate, we show below the related updatePairFee() routine. This routine takes two input
arguments: base and feeConfigIndex. The first argument indicates the pair to update while the
second argument indicates the new feeConfigIndex to locate openFee and closeFee. For gas efficiency,
the current logic properly locates the last element in oldFeePairs and replaces the old one. However,
it does not reflect the feePosition member in the affected pair (pointed to by the last element in
oldFeePairs). As a result, the affected pair may be using the wrong fee parameters to open and close
trades. The same issue also occurs when the pair’s slippage is adjusted.

12/21 PeckShield Audit Report #: 2023-101

https://github.com/apollox-finance/apollox-perp-contracts/commit/0e0fffb7

Public

328 function updatePairFee(address base , uint16 feeConfigIndex) internal {
329 PairsManagerStorage storage pms = pairsManagerStorage ();
330 Pair storage pair = pms.pairs[base];
331 require(pair.base != address (0), "LibPairsManager: Pair does not exist");
332 (LibFeeManager.FeeConfig memory feeConfig , address [] storage feePairs) =

LibFeeManager.getFeeConfigByIndex(feeConfigIndex);
333 require(feeConfig.enable , "LibPairsManager: Fee configuration is not available")

;

335 uint16 oldFeeConfigIndex = pair.feeConfigIndex;
336 (, address [] storage oldFeePairs) = LibFeeManager.getFeeConfigByIndex(

oldFeeConfigIndex);
337 uint lastPositionFee = oldFeePairs.length - 1;
338 uint oldFeePosition = pair.feePosition;
339 if (oldFeePosition != lastPositionFee) {
340 oldFeePairs[oldFeePosition] = oldFeePairs[lastPositionFee];
341 }
342 oldFeePairs.pop();

344 pair.feeConfigIndex = feeConfigIndex;
345 pair.feePosition = uint16(feePairs.length);
346 feePairs.push(base);
347 emit UpdatePairFee(base , oldFeeConfigIndex , feeConfigIndex);
348 }

Listing 3.2: LibPairsManager::updatePairFee()

Recommendation Revise the above-mentioned routines to properly adjust the the pair’s fee
and slippage.

Status The issue has been fixed by this commit: e56cc7a.

3.3 Suggested Adherence of Checks-Effects-Interactions

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Time and State [8]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance

13/21 PeckShield Audit Report #: 2023-101

https://github.com/apollox-finance/apollox-perp-contracts/commit/e56cc7a

Public

of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [13] exploit, and the Uniswap/Lendf.Me hack [12].

We notice an occasion where the checks-effects-interactions principle is violated. Using the
LibLimitOrder as an example, the cancelLimitOrder() function (see the code snippet below) is provided
to externally call a token contract to transfer assets. However, the invocation of an external contract
requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 81) starts before effecting the update
on internal state (line 82), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the very same
cancelLimitOrder() function. Note that there may be no harm caused to current protocol. However,
it is still suggested to follow the known checks-effects-interactions best practice.

75 f unc t i on c an c e l L im i tO r d e r (bytes32 orderHash) i n t e r n a l {
76 L im i tO rde rS to r age s torage l o s = l im i tO r d e r S t o r a g e () ;
77 I L im i tO r d e r . L im i tOrde r s torage o r d e r = l o s . l i m i tO r d e r s [o rderHash] ;
78 check (o r d e r) ;
79
80 _cance lL im i tOrde r (orderHash , IOrde rAndTradeH i s to ry . Act ionType . CANCEL_LIMIT) ;
81 IERC20 (o r d e r . t o k en I n) . s a f eT r a n s f e r (o r d e r . use r , o r d e r . amountIn) ;
82 _removeOrder (l o s , o rde r , o rderHash) ;
83 emit Cance lL im i tOrde r (msg . sender , o rderHash) ;
84 }

Listing 3.3: LibLimitOrder :: cancelLimitOrder()

In the meantime, we should mention that the supported tokens in the protocol are expected to
implement rather standard ERC20 interfaces and their related token contracts are not vulnerable or
exploitable for re-entrancy.

Recommendation Apply necessary reentrancy prevention by following the checks-effects-

interactions best practice. In addition, it is important to ensure the suggested tokens does not allow
for hooks for callbacks. Note that the issue is also applicable to another routine, i.e., LibBrokerManager
.withdrawCommission().

Status The issue has been fixed by this commit: a1388d7.

14/21 PeckShield Audit Report #: 2023-101

https://github.com/apollox-finance/apollox-perp-contracts/commit/a1388d7

Public

3.4 Improved Role Member Management in
LibAccessControlEnumerable

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LibAccessControlEnumerable

• Category: Security Features [5]

• CWE subcategory: CWE-287 [1]

Description

The facilitate role management, the Apollox protocol has a LibAccessControlEnumerable contract to
keep track of the assigned roles and associated bearers. In the process of role management, we notice
the current implementation can be improved.

To elaborate, we show below the related two functions: grantRole() and revokeRole(). The first
function is used to grant a role to a user while the second function revokes the role from a user. In
the meantime, it also keeps the list of members for a given role in the data structure acs.roleMembers

[role]. It comes to our attention that the acs.roleMembers[role] data structure is always updated
regardless whether the given account is already in the member set or not. For revision, we can move
the acs.roleMembers[role]-updating logic inside the corresponding if-branch (line 60 and 69).

58 function grantRole(bytes32 role , address account) internal {
59 AccessControlStorage storage acs = accessControlStorage ();
60 if (! hasRole(role , account)) {
61 acs.roles[role]. members[account] = true;
62 emit RoleGranted(role , account , msg.sender);
63 }
64 acs.roleMembers[role].add(account);
65 }
66
67 function revokeRole(bytes32 role , address account) internal {
68 AccessControlStorage storage acs = accessControlStorage ();
69 if (hasRole(role , account)) {
70 acs.roles[role]. members[account] = false;
71 emit RoleRevoked(role , account , msg.sender);
72 }
73 acs.roleMembers[role]. remove(account);
74 }

Listing 3.4: LibAccessControlEnumerable::grantRole()/revokeRole()

Recommendation Improve the above routines to properly update the acs.roleMembers[role]

data structure for the given role.

Status This issue has been fixed in the commit: a8d72e4.

15/21 PeckShield Audit Report #: 2023-101

https://github.com/apollox-finance/apollox-perp-contracts/commit/a8d72e4

Public

3.5 Incorrect Fee Total Accounting in LibFeeManager

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LibFeeManager

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [2]

Description

As mentioned earlier, each trade may be charged for fees, i.e., openFee and closeFee. While examining
the related fee-accounting logic, we notice the current implementation can be improved.

In the following, we show the related chargeOpenFee() routine. As the name indicates, this routine
is designed to charge the open fee for the given trade. The collected fee is updated in the feeDetails

structure with three members: total, daoAmount, and brokerAmount. We notice the total member
should be always updated no matter whether other members are updated. However, the current
implementation will not update the total member unless the second daoAmount is updated. The same
issue is also present in the chargeCloseFee() routine.

115 function chargeOpenFee(address token , uint256 feeAmount , uint24 broker) internal
returns (uint24){

116 FeeManagerStorage storage fms = feeManagerStorage ();
117 IFeeManager.FeeDetail storage detail = fms.feeDetails[token];
118
119 uint256 daoShare = feeAmount * fms.daoShareP / 1e4;
120 if (daoShare > 0) {
121 IERC20(token).safeTransfer(fms.daoRepurchase , daoShare);
122 detail.total += feeAmount;
123 detail.daoAmount += daoShare;
124 }
125 (uint256 commission , uint24 brokerId) = LibBrokerManager.updateBrokerCommission(

token , feeAmount , broker);
126 detail.brokerAmount += commission;
127
128 uint256 lpAmount = feeAmount - daoShare - commission;
129 LibVault.deposit(token , lpAmount);
130 emit OpenFee(token , feeAmount , daoShare , brokerId , commission);
131 return brokerId;
132 }

Listing 3.5: LibFeeManager::chargeOpenFee()

Recommendation Properly keep track of the total member of feeDetails when a trade is
opened, closed, or liquidated.

Status The issue has been fixed by this commit: 269fc96.

16/21 PeckShield Audit Report #: 2023-101

https://github.com/apollox-finance/apollox-perp-contracts/commit/269fc96

Public

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [1]

Description

In the Apollox protocol, there is a privileged owner account that plays a critical role in governing
and regulating the protocol-wide operations (e.g., configure various system parameters, assign other
roles, as well as upgrade the proxy). In the following, we show the representative functions potentially
affected by the privilege of the account.

15 function initFeeManagerFacet(address daoRepurchase , uint16 daoShareP) external {
16 LibAccessControlEnumerable.checkRole(Constants.DEPLOYER_ROLE);
17 require(daoRepurchase != address (0), "FeeManagerFacet: daoRepurchase cannot be 0

address");
18 LibFeeManager.initialize(daoRepurchase , daoShareP);
19 }
20
21 function addFeeConfig(uint16 index , string calldata name , uint16 openFeeP , uint16

closeFeeP) external override {
22 LibAccessControlEnumerable.checkRole(Constants.PAIR_OPERATOR_ROLE);
23 require(openFeeP < 1e4 && closeFeeP < 1e4, "FeeManagerFacet: Invalid parameters"

);
24 LibFeeManager.addFeeConfig(index , name , openFeeP , closeFeeP);
25 }
26
27 function removeFeeConfig(uint16 index) external override {
28 LibAccessControlEnumerable.checkRole(Constants.PAIR_OPERATOR_ROLE);
29 LibFeeManager.removeFeeConfig(index);
30 }
31
32 function updateFeeConfig(uint16 index , uint16 openFeeP , uint16 closeFeeP) external

override {
33 LibAccessControlEnumerable.checkRole(Constants.PAIR_OPERATOR_ROLE);
34 require(openFeeP < 1e4 && closeFeeP < 1e4, "FeeManagerFacet: Invalid parameters"

);
35 LibFeeManager.updateFeeConfig(index , openFeeP , closeFeeP);
36 }

Listing 3.6: Example Privileged Operations in FeeManagerFacet

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it would be worrisome if the privileged account is not governed by a DAO-like

17/21 PeckShield Audit Report #: 2023-101

Public

structure. Note that a compromised account would allow the attacker to modify a number of
sensitive system parameters, which directly undermines the assumption of the protocol design.

Moreover, it should be noted that current contracts are to be deployed behind a proxy with
the typical Diamond implementation. And naturally, there is a need to properly manage the admin
privileges as they are capable of upgrading the entire protocol implementation.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team. The team intends to introduce multi-sig
(with multiple role separation) and timelock mechanisms to mitigate this issue.

18/21 PeckShield Audit Report #: 2023-101

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Apollox protocol, which is a
decentralized derivatives trading platform. The main architecture of Apollox V2 is the fully on-chain
liquidity model for more transparent, low slippage trades. Users do not need to register, deposit or
withdraw funds. All V2 trades are executed against the ALP pool on BNB Smart Chain and liquidity for
all V2 trading pairs is shared via the ALP pool to maximize capital efficiency. Real time price feeds will
be taken from both Binance Oracle and Chainlink to ensure the most accurate pricing. The current
code base is well organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

19/21 PeckShield Audit Report #: 2023-101

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

20/21 PeckShield Audit Report #: 2023-101

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

21/21 PeckShield Audit Report #: 2023-101

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Apollox
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Settlement Logic in TradingCloseFacet
	Incorrect Pair Slippage Update Logic in LibPairsManager
	Suggested Adherence of Checks-Effects-Interactions
	Improved Role Member Management in LibAccessControlEnumerable
	Incorrect Fee Total Accounting in LibFeeManager
	Trust Issue of Admin Keys

	Conclusion
	References

